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Mass flow through a circular orifice and a two- 
dimensional slit at high Knudsen numbers 
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The local and total mass flow through a circular orifice and a two-dimensional 
slit with large upstream to downstream pressure ratio is calculated for large 
Knudsen number. The solution is obtained by performing one iteration on an 
integral form of the kinetic equation, starting with the free molecular solution 
for the distribution function. A relaxation model is used to describe the inter- 
molecular collisions. There is found to be a variation of approximately 40 yo in 
the local mass flow perturbation (from the free molecular value) across the orifice. 
For the slit the variations are smaller when the Reynolds number is less than 0-3, 
but are comparable for greater values. This Reynolds number, defined by 
Re = 2Rp(kT/m)~/~withRtheradiusoftheorificeorhalf-widthof the slit andwith 
the flow field quantities evaluated far upstream, appears to be a less ambiguous 
quantitative parameter than the inverse Knudsen number. The ratio of total 
mass flow to the free molecular value is given by [1+  0-083Re + o(Re)] for the 
orifice and [l - 0.057 Re In Re + 0.055Re + o(Re)] for the slit. There is agreement 
within experimental error between the theoretical results and available experi- 
mental data for the circular orifice when Re < 1. 

1. Introduction 
Liepmann (1961) has pointed out that the problem of flow through an orifice 

offers the possibility of a comparison between experiment and a kinetic theory 
analysis which should be insensitive to the nature of the interaction of the mole- 
cules with the physical boundaries present. Most of the other more widely 
analysed problems, e.g. plane Couette flow, give results which are crucially 
dependent on this interaction1 for high Knudsen numbers. Liepmann has pre- 
sented experimental results for the mass flow through a circular orifice. These 
experiments are limited to the case of large pressure ratios across the orifice. The 
discussion in this paper will also be limited to this case. 

The mass flux for large Knudsen numbers can also be of interest when the 
molecules passing through the orifice are used as a molecular beam. In some 
experiments, e.g. when attempting to deduce accommodation coefficients for 

7 Now a t  Division of Aeronautical Sciences, University of California, Berkeley, 
California. 

4 The shock structure problem is of course a notable exception, but for this problem the 
accurate measurement of local properties of the gas is extremely difficult. 
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normal momentum by measuring the forces exerted upon objects placed in the 
beam (Stickney & Hurlbut 1963), a high molecular flux is desirable to increase 
the accuracy of the measurements. This flux increases with the pressure upstream 
of the orifice. However, the Knudsen number (based on a typical dimension of 
the orifice) decreases with increasing pressure and could fall to values where use 
of the classical free molecular value for the mass flow would no longer be justified. 
A correction to account for the effect of large but finite Knudsen number would 
then be of interest. 

A theoretical calculation of the local mass flow at the centre of a circular orifice 
was given by Narasimha (1  961). The calculation was based on a general iterative 
method of solving the kinetic equation for the distribution function (Willis 1958). 
This analysis was subject to certain restrictions and simplifying assumptions, 
outlined in $ 2. It has been shown (Willis 1960) that the value of the centre-point 
mass flow is sensitive to the exact nature of any simplifying assumptions used. 

In  this paper we present the results of numerical calculations of the total mass 
flow through both a circular orifice and a two-dimensional slit. The calculations 
are restricted to one iteration and the effect of molecules which, due to collision, 
return through the orifice is neglected. No further simplifying assumptions, such 
as those used by Narasimha, are employed. 

In  $ 2  we show that the use of only one iteration, starting from the free mole- 
cular distribution function, gives results for the mass flow of the form 

where R is the radius of the orifice or half-width of the slit, h is the mean free path, 
and a(.) - a for the orifice and a(a) - a(lna+c), where c is a constant of order 
unity, for the slit. Further iterations will in general change the value of the o(a) 
term, and, formally, there is no justification for retaining these terms. However, 
the calculation of these terms allows us to estimate the range of a over which the 
o(a)  terms may be ignored and to estimate empirically the range of a: for which 
the first iterate results should give reasonable agreement with experiment. 

A comparison between the mass flows for the two geometries is also useful in 
estimating the possible effect of irregularities in small orifices which, due to 
fabrication difficulties, will rarely be exactly circular or two-dimensional. 

2. The first iterate method 
A complete kinetic theory analysis would call for a solution of the transport 

equation (the Maxwell-Boltzmann equation or a model equation) for arbitrary 
Knudsen number. Such a solution does not appear feasible at the present time 
and we restrict attention to obtaining a solution which is valid for high Knudsen 
number. We use the method of integral iteration proposed by Willis (1958). In  
this method the transport equation for steady state conditions with no external 
forces is written 

where f(s, g )  is the distribution function, s is the spatial co-ordinate (we do not 
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use the more conventional r in order that T may be used in the cylindrical co- 
ordinate scheme for the circular orifice), 5 the molecular velocity, P represents 
the production of molecules of velocity 5 due to collisions, and f D  represents the 
loss of molecules of this class due to collisions. The equation can be written in 
this form for the Maxwell-Boltzmann equation, if the total collision cross-section 
is finite, and for the model equation used below. The iteration scheme is repre- 
sented by 

For high Knudsen number the obvious choice of f(O), the zeroth iterate, is the free 
molecular solution, i.e. the solution for infinite Knudsen number. The conver- 
gence of this iteration scheme has only been proved for three simple linearized 
problems (Willis 1958; Pao 1964). In  general, however, an order of magnitude 
analysis indicates that if denotes a physically meaningful moment of f n )  

then I M(*L+l) - M(")I / 1 M("' - M+l)I approaches zero as a approaches zerot. A 
similar statement regarding f ( % )  itself is true if 'small' regions in the vicinity of 
special values of s and 5 (frequently 6 = 0) are excluded. All moments are 
formally functions of a and can be expanded for small a in terms of elementary 
functions (usually powers of a and lna). Certain leading terms in these expan- 
sions (often only the first term) will be the same for the first and subsequent 
iterations. Strictly, then, it is consistent to retain only these terms in the 
expansion of the first iterate moments. However, it  is of interest to investigate 
the behaviour of the full first iterate as the differences between this and the 
leading terms in the expansion may be helpful in estimating the magnitude of 
changes to be expected from more iterations. 

5. (af'"+"/as) = -f(fl+l)D(f(%), 5) + P(f@',  5). 

The formal solution of equation (2.1) for f ( l )  gives 

where s,  s' and S" are all of the form so + gt and t is a positive scalar quantity. The 
notation Po(s") is merely shorthand for P[f(O)(s", E), 51 and similarly for DO(s"). 
The point so is arbitrary, but is obviously chosen to coincide with a point where 
the distribution function is known, i.e. at a boundary. The integrals in (2 .2)  are 
line integrals. A more convenient form for the present application is 

Narasimha (1961) has used essentially this form of the equation but derives it in 
a slightly different fashion. 

Taking a co-ordinate system such that the orifice or slit lies in the plane z = 0, 

t Note added in proof. However, recent results obtained in Pao (1964) indicate that the 
iteration scheme outlined above will have to be modified to take correct account of the non- 
uniform validity of the free molecular solution far from the orifice. Pao's result further 
indicates that the leading term given by integral iteration is correct. 
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and z > 0 corresponds to the upstream or high pressure side, the boundary 
conditions are 

” <  ”’) (2 .4 )  
and f ( S o 9 5 )  = 0 for z-f-CQ, tg > 0, 

where n is number density and h = rn/2kT.  The point s is most conveniently taken 
in the plane z = 0, i.e. in the orifice or slit, and the local mass flow is given by 

f ( so ,  c )  = n,(h,/n)$ exp ( - h,t2) for z-f +a, 

~ 1 )  = 111- ( m t 2 ) f ~ ~ ~ 0 ) d 3 t ,  (2 .5)  

where strictly the integration should be over all values of 5, but neglecting the 
molecules scattered back through the orifice or slit we may restrict the integral 
to negative values of t2. 

It can be shown that Do is of order E/h where h is the mean free path, and 
[PO(s”) -DO(S”)~,] is of order (g,/A) Sz(s’’), where Q(s”) is the solid angle sub- 
tended a t  s“ by the orifice or the slit. The mass flow then becomes 

(2.6) } 
!&Cl) = +7),r 1 + a, a + 4 4 1  
~$1) = hfm[l +u,alna+a,ct+o(a)] (slit), 

(orifice), 

where a N RIA is an inverse Knudsen number and a,, a2 and u3 are constants of 
order unity. The correctness of these expressions is most readily seen from the 
specific analysis below using Krook’s model (Bhatnager, Gross & Krook 1954) 
for the collision process, but we believe them to be correct for any kinetic equation 
where splitting the collision operator into the form P- f D  is valid. 

The solution, as represented by equations (2 .3)  to (2.5), is now given by a 
series of quadratures. However, the calculation of PO and Do, even for such a 
simple molecular model as rigid spheres, would be an onerous task, and we effect 
a great simplification by replacing the Maxwell-Boltzmann collision operator by 
the simple statistical operator suggested by Krook (Bhatnager et al. 1954). In 
this model D and P are given by the simple expressions 

D = an, P = 6n2(h/n)%exp [ - h ( c - ~ ) ~ ] ,  h = rn/2kT, (2.7) 
where 6 is a constant, and n, u and T are the local number density, macroscopic 
velocity and temperature, defined by 

We define the following non-dimensional quantities 

(2 .9 )  
N = no/n,, 

W = hku, 

B = ho/hm = T,/Ta, 

7’ = Is-s’I/B, 

C = h i t ;  

ct = Sn, h i  R, 

where the superscript 0 denotes the free molecular quantities. All of these with 
the exception of a will in general be of order unity. The parameter 01 has dimen- 
sions of inverse Knudsen number and is usually a small quantity. The actual 
relationship between a and RIA,, can be assigned in several ways, as is discussed 
in 94 .  
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Substituting equations (2 .3 ) ,  (2.4), (2.7) and (2.8) in (2.5) and using the fact 
that hfm = rnnm/(27r4hi), we obtain 

exp ( - a j 7 ’ q 3 d q 9 ] )  (2.10) 
0 

Because the vectors S’ - so, S“ - so and s - S ,  are parallel, the functions N(q’) ,  
etc., depend in fact upon the co-ordinates of s, i.e. the position in the orifice, and 
the direction of C as well as 7’. By observing that IN($) - 1 I, jB(q’) - 1 I and 
I W(7’)l are all of order ( T ’ ) - ~  for the orifice and (y’)-l for the slit when 7’ 9 1 the 
results of equation (2.6) are readily verified. 

For the slit one of the quadratures (that with respect to the component of C 
parallel to the edges of the slit), can be performed analytically, and for the circular 
orifice one integral is trivial when s is at the centre of the orifice. Further quadra- 
tures require numerical work or approximation of the integrand. Narasimha’s 
calculation was limited to the centre-point mass flow with the exponential factor 
explicitly demonstrated in the integrand of equation (2.10) set equal to unity. 
This preserves the leading term, which is of order a, but neglects all higher-order 
terms. Narasimha further simplified the calculation by assuming analytic 
expressions for N ,  B and W which have the correct behaviour along the centre line 
of the orifice and at large distances from the orifice. 

Narasimha’s result, in the notation of this paper, is (subscript c denotes 
centre line) 

with a = 0.22. Willis (1960) obtained a value of a = 0.28 by determining N ,  B 
and W numerically, and values of a ranging from 0.02 to 0.24 by using different 
analytic approximations to N ,  B and W, which, a t  least a priori, appeared as 
plausible as those used by Narasimha. In  view of these results it was decided to 
proceed with a numerical evaluation of the quadratures in equation (2.9) without 
making any further approximations. The only quadrature that offers more than 
routine difficulties is, for both the orifice and the slit, of the form 

In(a, b)  = xn exp (bx - a/x - 9) dx. 

The parameter b has the order of the local Mach number, a can take on all positive 
values, and x: represents a non-dimensional velocity (the actual velocity for the 
orifice, and the component in the plane perpendicular to the edges for the slit). 
This integral is discussed in a more detailed report (Willis 1964). 

3. Free molecular flow field 
To perform the quadratures in equation (2.9) we must calculate the free 

molecular flow field quantities no, TO, and uo. We use the definitions in equation 
(2.8)) together with the free molecular solution. Upstream of the orifice (or slit) 
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this is given by ffm(s, g) = 0 if the vector 5 lies within the solid angle subtended 
by the orifice a t  s and is directed away from the orifice and f fm(s ,g)  =fa for 
all other values of e.  

For both the orifice and slit it  readily follows that (Narasimha 1961) 

no/n, = Nfs") = [l-  Q(s")/~T], 

To/Tm = l/B(s") = 1 -m(uo))"/3lcT, = (1 - 2W2/3), 
(3.1) 

(3.2) 
where Q is the solid angle subtended by the orifice or slit. The velocities uo and 
the solid angles take different forms for the two geometries. 

For the orifice we use cylindrical co-ordinates ( r ,  8, z )  with the origin at the 
centre of the orifice (now given by z = 0, r < R). The solid angle is given by 

This expression can be arranged in terms of elliptic integrals. We evaluated it 
using a scheme proposed by Naito (1957), who also gives references to previous 
investigations and tables available in the literature. A detailed discussion is 
given in Willis (1 964). The non-dimensional velocity components are given by the 
following formulas: 

NW, = - 0 . 2 5 ~ - & [ 1 + ( R ~ - r ~ - z ~ ) / D ] ,  (3.4) 
NW, = - n-*R2zr/[D(D + R2 + r2 + 231, (3.5) 

where 

These formulas were derived by straightforward, if rather tedious, integration. 
A partial check on the algebra is provided by Narasimha's results for r = 0 and 
for ( r 2 + z 2 )  9 R2. 

For the two-dimensional slit we use Cartesian co-ordinates (x, y, z )  such that 
the slit is given by z = 0, - R < x < R. The solid angle is given by 

B2 = (R2 + r2 + z2)Z - 4r2B2. 

Q ( x ,  2) = 2(8, - el), (3.6) 

where tan8, = z / (x+R) ,  tan8, = z / (x -R) ,  (3.7) 

and we take both 8, and 8, in the range 0 to 7r. 
The velocity components are now given by 

NW, = - 0.25~-4 (sin 8, - sin O,), 
NW, = - 0.25n-4 (COS 8, - cos 0,). 

(3.8) 

(3.9) 

These relations are all exact and can be obtained from the definitions and 
elementary integrals. 

All the information needed to perform the quadratures in equations (2.10) is 
now available. 

4. Results 
The local mass flow, using the complete first iterate, was calculated for five 

points across the orifice or slit and for six values of the rarefaction parameter. 
To give comparable weighting for each point in integrating over the orifice or slit 
to obtain the total mass flow we chose the points x/R (slit) or r2/R2 (orifice) to be 
equal to 0.00, 0.25, 0.50, 0-75, and 1.00. For the rarefaction parameter we used 
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the values (n*a/2)  = E = 0.0, 0.1, 0.2, 0.5, 1.0, and 2.0 ( E  is the value of R/h 
suggested originally by Narasimha). We estimate that there is less than 1 % 
error in the numerical evaluation of (dU- hfm). 

For the slit in the limit of very small a the quadratures can be performed 
analytically. The mass flow correction is independent of xlR and given by the 
formula &l) = m fm[l - (&d - 3n-s) a In a + @a)] 

= fiYm[1 -0.161alna+O(a)]. (4.1) 
The O(a) term is, however, dependent on x/R. 

Before proceeding with the discussion we must relate a to some physically 
meaningful quantities. Narasimha has expressed a in terms of R/h by equating 
the number of collisions (per unit volume and time) in the undisturbed gas 
according to Krook’s model, namely, 36&, to in,,E/h. Using = 2/(nh,)*, this 
gives 

However, the experimental values of mass flow are presented in terms of a 
Reynolds number defined by the experimentally determined viscosity, density 
and temperature. Specifically, Narasimha uses 

a = &n,h$R = ( 2 / d )  (Rlh). (4.2) 

Re = 2Rpm/,um(2h,)4. (4.3) 

Re = 2 J2a. (4.4) 

For the Krook model the Chapman-Enskog viscosity is given by pm = pm/6n, 
and hence, after little algebra, 

If we choose to define a mean free path by the common formula 

= (2p)/(pE),  

we find = (in&) (Rlh). (4.5) 
We believe that equation (4.4) is most appropriate for comparison between 
theory and experiment. The use of Knudsen number can be ambiguous, as 
shown by equations (4.2) and (4.5). We, therefore, present all results in terms of Re. 

The local mass flow for the orifice is shown as a function of Reynolds number 
and position in figure 1. The curve corresponding to Re = 0 gives the leading 
term for this case. The differences between this curve and those for non-zero 
values of Re show the difference between the full first iterate and the leading 
term results. 

It is immediately apparent that there is a significant variation in the mass 
flow perturbation across the orifice. The average mass flow is always a t  least 
20 yo lower than the local centre-point mass flow. Narasimha’s approximate 
calculation of the centre-point mass flow gives, with our interpretation of Re, 

compared to the correct value, for Re --z 0, of 0-104Re. The leading term for the 
total mass flow is given by 

so that Narasimha’s estimate of the total mass flow, which was obtained by 
assuming that the mass flow perturbation is uniform across the orifice, and hence 
is given by the same expression as in equation (4.6), is in fact quite good. The 

[(&L1)/?hfm) - 11 = 0-078Re, 

[(riz(l)/hfm) - lltotal = 0.083 Re, 

(4.6) 

(4.7) 



28 D. Roger Willis 

errors introduced by the approximations Narasimha used are to a large extent 
compensatory. 

ra/R2 

FIGURE 1. Local mass flow perturbation for circular orifice. Full first iterate results. 

Re = 2Rp(kT/rn)*/p. 

The local mass flow for the slit is shown as a function of Reynolds number and 
position in figure 2. The leading term for this case is of the form 

(kt1)/kfm) = 1 +Re [ - 0.057 In Re + c(x/R)],  (4.8) 

where c(x/R)  is a function of order unity. This cannot be shown on the figure 
with our choice of the non-dimensional ordinate. Again it can be seen that, 
except for very small Re, there is an appreciable difference in the mass flow 
perturbation from the centre to the outside of the slit. 

The total mass flow is shown as a function of Reynolds number for both 
geometries in figure 3. For the orifice the leading term is given by equation (4.7)) 
and the error in the numerical value of 0.083 is estimated to be less than 1 %. 
For the slit the leading term for the total mass flow perturbation is 

[(dl)/hfm) - lItotal = - 0.057 Re In Re + CRe. (4.9) 
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The constant C cannot be calculated to the same accuracy as the constant 
- 0.057 without performing a special computation. However, it  was found that 
the expression 

[(d1)/hfVt) - IItotsl = - 0-057 Re In Re + 0-055 Re 
+ 0.022Re2-0.005Re21nRe (4.10) 

000 0.25 0.50 0.75 1.00 

X l R  
FIGURE 2. Local mass flow perturbation for two-dimensional slit. Full first iterate results. 
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Re = 2Rp(kT/m)~ / ,u .  
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Re 

FIGURE 3. Comparison of total mass flow for circular orifice and two-dimensional slit. 
Re = 2Rp(kT/ rn) f /p .  
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fits the numerical values of (dl)/h,),,,,, for Re = 0.32, 0.64 and 1.60, and 
therefore a reasonable estimate for 2 is 0.055. This value was used in plotting the 
leading term in figure 3. 

It can be seen that there are significant differences predicted for the two 
geometries. However, the choice of orifice radius and half-width of the slit as the 
characteristic lengths is somewhat arbitrary. We might, for example, select as 
an effective dimension the ratio of area to length of perimeter, in which case the 
effective Reynolds number for the orifice would be halved and the differences 
between the two geometries would appear much less. 

Re 

FIGURE 4. Comparison of theory and Liepmann’s data. x , Computed values from full first 
iterate. Data: 0, helium; 0 ,  argon; 0, nitrogen. Re = 2Rp(kT/m)*/p. 

A comparison between theory and experiment for the circular orifice is shown 
in figure 4. The only strictly valid comparison is one between the leading term 
result [equation (4.7)] and the experimental data for small values of a the 
‘natural ’ small parameter for the problem. Bearing in mind the numerical factor 
in equation (4.4), a liberal upper limit for Re would be unity. Unfortunately, for 
Re < 1 the relative spread in the experimental data is too large to draw any 
definite conclusions. At best we may claim fair agreement between either the 
leading term or the complete first iterate results and the experimental data. (The 
agreement looks better if we disregard the very scattered helium data.) For 
Re > 1 there is no reason to expect that either theoretical result should agree 
with the data. Indeed, we see that the full first iterate results clearly under- 
estimate the mass flow, and the linear expression overestimates the mass flow. 
It is not unreasonable to hope that further iterations (which certainly should be 
called for, as there is no justification for expecting the first iterate correction to 
be dominant unless the Reynolds number is small) would improve the agreement 
between theory and experiment. 
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Probably coincidentally, the full first iterate results for the local mass flow at 
the centre of the orifice agree rather well with the experimental results for the 
total mass flow. This was noted by Sherman (1963). 

5. Conclusions 
The problems considered are sufficiently simple that quite detailed theoretical 

calculations can be made without introducing (possibly crucial) simplifying 
assumptions about the free molecular distribution function. 

For the circular orifice there is fair agreement between theory and experiment. 
A more definitive comparison can only be made if the experimental scatter can 
be greatly reduced for low values of the Reynolds number (i.e. large values of the 
Knudsen number), or if the theory can be extended to higher values of the 
Reynolds number, perhaps by performing another iteration in the proposed 
scheme. For the circular orifice the local mass flow perturbation is greatest at the 
centre and falls to approximately 60 % of the centre value a t  the edge. This is true 
for all Reynolds numbers investigated. For the slit, the variation decreases with 
decreasing Reynolds number, but is comparable to that of the orifice for Reynolds 
number greater than about 0.3. Use of the centre-point value to estimate the 
total mass flow (Narasimha 1961) would therefore give too large values of the 
mass flow. However, Narasimha’s approximate calculation of the centre-point 
mass flow perturbation, to order Re, is about 20 yo low, and his resulting estimate 
of the total mass flow is quite accurate. 

There are significant differences between the theoretical predictions for the 
mass flow perturbation for a circular orifice and a two-dimensional slit, but these 
differences might be minimized by changing the rather arbitrary characteristic 
lengths used in defining the Reynolds number. 

The bulk of the work contained in this paper was performed as part of a 
programme in high-speed gas dynamics supported by United States Air Force 
Grant AF-AFOSR-112-63. It was completed under the sponsorship of the 
Office of Naval Research, under Contract N-onr-222( 45). 
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